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Abstract

Using Parsons-type scaling, the Onsager theory for the isotropic–nematic (I–N) transition of rigid-rod lyotropic polymer liquid crystals is
combined with the equation of state for hard-sphere-chain fluids of Chapman et al. and that of Hu et al. The equation of Hu et al. gives the I–N
transition pressure and density in good agreement with computer simulation by Wilson and Allen for a semi-flexible hard-sphere chain
consisting of seven segments. For real semi-flexible polymers, we follow the Khokhlov–Semenov theory of persistent chains that introduces
chain flexibility into the Onsager theory. Using a consistent procedure to regress the equation-of-state parameters, the equations of Chapman
et al. and Hu et al. are also compared with the theory of DuPre´ and Yang that uses the equation of Lee for hard spherocylinders. These models are
compared with experiment for two binary polymer solutions containing poly(hexyl isocyanate) and another solution containing polysaccharide
schizophyllan. The concentration of polymer at the I–N transition is predicted as a function of the molecular weight of polymer. All models
perform similarly and show semi-quantitative agreement with experiment.q 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In good solvents, lyotropic polymer liquid crystals exhibit
the isotropic–nematic (I–N) transition as the concentration
of polymer rises [1]. There has been continuing interest in
the theoretical description of the I–N transition of lyotropic
polymer liquid crystals [1–3]. For lyotropic polymer liquid
crystals, the Flory [1] and Onsager [1–3] theories are widely
used to compute the I–N transition of rodlike molecules. In
this work, we consider the Onsager theory of lyotropic poly-
mer liquid crystals where the I–N transition results from the
competition between the orientational entropy and the
entropy associated with the excluded volume that favor,
respectively, the disordered isotropic phase and the ordered
nematic phase.

Molecular thermodynamic models for lyotropic polymer
liquid crystals use the equation-of-state theory for hard
particles such as hard spherocylinders. Among them, the
particularly simple yet accurate model of Lee [4–6] applies
the scaling approach of Parsons [7] to hard spherocylinders.
By decoupling translational degrees of freedom from orien-
tational degrees of freedom, the Parsons scaling theory
introduces both molecular orientation and molecular shape

into the Helmholtz energy for a hard-sphere fluid [7,8]; the
Helmholtz energy for hard-spherocylinder fluids is obtained
by scaling the Helmholtz energy for hard-sphere fluids
[4–6]. For the I–N transition of hard spherocylinders,
Parsons’ theory shows good agreement with computer
simulations [8].

Recently, a group of new equations of state has appeared
for hard-sphere-chain fluids [9–15] where a molecule is
represented by a chain of tangent hard spheres. Hu et al.
[13] compared several equation-of-state theories for hard-
sphere chains with computer simulations. To predict the
I–N transition of hard-sphere-chain fluids, Vega and Lago
[16] and later Williamson [17] used Parsons-type scaling by
combining the equation of state for hard-sphere chains by
Chapman et al. [10] with the Onsager theory. The equation
of Chapman et al. [10] is based on the theory of associating
fluids due to Wertheim [9]. The equation of Chapman et al.
is most suitable for linear tangent hard-sphere chains (i.e.
hard-sphere chains in a linear configuration) [10,12]. The
Parsons-type scaling used by Vega et al. introduces the
orientational effect into the equation of state for hard-sphere
chains through the second virial coefficient [16,17].

Boublı́k has indicated that, for isotropic fluids, compres-
sibility factors of flexible hard-sphere chains are very close
to those of linear tangent hard-sphere chains [12]. Indeed, at
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moderate packing fractions, the equation of Chapman et al.
and the other equations presented in Refs. [9–15] give
similar compressibility factors in good agreement with
computer simulations for flexible hard-sphere chains
[13].

However, differences among the equations of state for
hard-sphere chains become noticeable in the second virial
coefficient as the chain length rises [13]. Because the
Parsons-type scaling used by Vega et al. [16,17] introduces
the orientational effect through the second virial coefficient,
we here examine how the choice of the equation of state for
hard-sphere chains affects the predicted I–N transition.
Among several equations shown in Ref. [13], the equation
of Chapman et al. [10] and that of Hu et al. [13] give,
respectively, the largest and smallest second virial coeffi-
cients for hard-sphere chains. In this work, we combine the
equation of state for hard-sphere chains of Chapman et al.
[10] and that of Hu et al. [13] with the Onsager theory to
compute the I–N transition.

The equation of Hu et al. shows excellent agreement
with computer simulations for both second virial coeffi-
cients and compressibility factors of flexible hard-sphere
chains over a wide range of chain length [13]. To combine
the equation of Hu et al. with the Onsager theory, we follow
closely the Parsons-type scaling proposed by Vega and
Lago [16,17]. We first compare the equation of Hu et al.
[13] and that of Chapman et al. [10] with the computer
simulation by Wilson and Allen for a fairly rigid semi-
flexible hard-sphere chain consisting of seven segments
[18].

For real semi-flexible polymers, it is necessary to
introduce chain flexibility into the orientational entropy of
the Onsager theory [1–3,5,6]. For the orientational entropy
of semi-flexible polymers, we use the equation of DuPre´ and
Yang [5] that is based on the theory of Khokhlov and
Semenov for persistent chains [19].

We compare theory with experiment for two binary
polymer solutions containing poly(hexyl isocyanate)
[20,21] and for another solution containing polysaccharide
schizophyllan [22,23]. Using a consistent procedure to
regress the equation-of-state parameters, the equation of
Chapman et al. and that of Hu et al. are also compared
with the model of DuPre´ and Yang [5] that uses the equation
of Lee for hard spherocylinders [4–6]. For representing
semi-flexible polymers, each model requires two equation-
of-state parameters that represent the size of the molecule.
These parameters are regressed from osmotic-pressure data
for isotropic solutions [20,22]. For the orientational
entropy in the nematic phase, theory also requires the
persistence length that defines the extent of chain
flexibility. For each solvent-polymer pair, we use the
reported persistence length that was regressed from
intrinsic-viscosity data by the wormlike-chain theory
[21,23]. Using three parameters, we then predict the
concentration of polymer at the I–N transition as a function
of polymer molecular weight.

2. Theoretical framework

2.1. Parsons-type scaling applied to the Onsager theory

For athermal systems where the attractive interaction is
negligible, the Onsager theory expresses the residual Helm-
holtz energy of rigid rod/solvent systems as a sum of the
orientational entropy and the orientation-dependent second
virial coefficient (i.e. excluded volume) using a single-
particle orientational distribution function [1–3]. The I–N
transition follows the competition between the orientational
entropy and the entropy associated with the excluded
volume that favor, respectively, the disordered isotropic
phase and the ordered nematic phase. The Onsager theory
predicts that the isotropic phase is stable at low rod concen-
trations. As the rod concentration rises, a biphasic region
appears where the isotropic and nematic phases coexist. At
higher rod concentrations, the nematic phase becomes the
only stable phase.

In the Onsager theory, a binary rigid rod/solvent system is
represented by a pseudo one-component system using the
equation-of-state theory. In that representation, thermody-
namic properties of the mixture are expressed in terms of the
packing fraction of rigid rod and the equation of state gives
the osmotic pressure of the solution. Various improvements
in the Onsager theory have been proposed to extend the
theory to higher concentrations where the truncated
second-virial-coefficient expansion is not sufficient [1–3].

To extend the Onsager theory to higher concentrations
and to other hard particles such as hard-sphere chains, we
use Parsons-type scaling as proposed by Vega et al. [16,17].
In the nematic phase, this scaling introduces the effect of
molecular orientation into the equation of state for hard
particles through the second virial coefficient. In Parsons-
type scaling of Vega et al., the equation of state of the
anisotropic phase is expressed in terms of that of the
isotropic phase; the essential step is the assumption [16,17]

Baniso
i

Biso
i

¼
Baniso

2

Biso
2

, (1)

where Biso
i and Baniso

i are theith virial coefficient of the
isotropic phase and that of the anisotropic (i.e. nematic)
phase, respectively.

Consider a system of volumeV containingN molecules of
volumen0. Under the assumption of Eq. (1), the compres-
sibility factor and the Helmholtz energy per molecule of the
anisotropic phase are given in terms of the compressibility
factor of the isotropic phase [16,17]:

Zaniso¼ 1þ
Baniso

2

Biso
2

 !
(Ziso ¹ 1) (2)

Aaniso

kT
¼

A0

kT
þ ln hþ j þ

Baniso
2

Biso
2

 !∫h
0

Ziso ¹ 1
h

dh, (3)
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wherek is the Boltzmann constant,T is the absolute tem-
perature,h ¼ Nn0/V is the packing fraction (i.e. reduced
density),Ziso is the compressibility factor of the isotropic
phase,A0 is the Helmholtz energy per molecule in the
standard state, andj is the negative of the orientational
entropy per molecule. The standard state is the ideal
isotropic solution whereZiso ¼ 1 andj ¼ 0 at unit packing
fraction.

In Eqs. (2) and (3),j and Baniso
2 depend on the single-

particle orientational distribution function. Specifically,
Baniso

2 is a function of parameterr that is proportional to
the average of the sine of the angle between two
molecular-orientation vectors. Parametersj and r are
defined by

j(f ) ¼

∫
f (Q)ln[4pf (Q)]dQ (4)

r(f ) ¼
4
p

∫�����sing Q,Q9ð Þ

�����f (Q)f Q9ð ÞdQdQ9, (5)

where f is the single-particle orientational distribution
function, Q is the solid angle andg is the angle between
two molecular-orientation vectors.

With j ¼ 0 andBiso
2 ¼ Baniso

2 , Eqs. (2) and (3) reduce to
the compressibility factor and the Helmholtz energy per
molecule, respectively, of the isotropic phase. The Helm-
holtz energy per molecule of the isotropic phase is given by

Aiso

kT
¼

A0

kT
þ ln hþ

∫h
0

Ziso ¹ 1
h

dh: (6)

2.2. Semi-flexible polymers

For real semi-flexible polymers, it is necessary to
introduce the effect of chain flexibility into the Onsager
theory. In this work, we follow the method of DuPre´ and
Yang [5] for semi-flexible polymers based on the
Khokhlov–Semenov theory of persistent chains [19]. For
semi-flexible polymers, we use the single-particle orienta-
tional distribution function in the Onsager theory as the
orientational distribution function of unit vectors tangent
to the contour of a semi-flexible chain. Chain flexibility
has a large effect on the predicted polymer concentration
at the I–N transition [5,6].

In this work, we use Onsager’s trial function for the
single-particle orientational distribution function to
compute the orientational entropyj and parameterr for
Baniso

2 . For semi-flexible polymers, these parameters are
given by [2,5]

j(a; L=P) < ln a ¹ 1þ pe¹ a þ
L

6P
(a ¹ 1)

þ
5
12

ln cosh
L
P

a ¹ 1
5

� �� �
ð7Þ

r <
4������
pa

p 1¹
15

16a
þ

105
512a2 þ

315
8192a3

� �
, (8)

wherea is the variational parameter that specifies the sharp-
ness of the distribution in Onsager’s trial function,L is the
contour length, andP is the persistence length of polymer.
Parametera is determined by minimizing the Helmholtz
energy per molecule of the anisotropic phase. For the
nematic phase,j . 0 andr , 1.

In Eq. (7), we recover rigid rods in the limitL/P → 0.
Without resorting to Onsager’s trial function for the single-
particle orientational distribution function, Williamson
recently presented a Monte-Carlo annealing technique that
determines exactly the orientational distribution function by
directly minimizing the Helmholtz energy per molecule of
the anisotropic phase [17].

In the present theory, the flexibility parameterL/P enters
only in the nematic phase. While the Helmholtz energy of
the isotropic phase also depends on this parameter, that
dependence is very weak and is neglected here.

2.2.1. Model 1. Equation of Chapman et al. for hard-sphere
chains

Recently, several equations of state have appeared for
hard-sphere chain fluids [9–15]. Williamson [17] combined
the equation of Chapman et al. with Eqs. (2) and (3) to
predict the I–N transition. The equation of Chapman et al.
[10] is most suitable for hard-sphere chains in a linear con-
figuration (i.e. linear tangent hard-sphere chains) [10,12]. In
the equation of Chapman et al.,Ziso is given by [10,17]

Ziso ¼ 1þ
r 4h¹ 2h2ÿ �

(1¹ h)3 ¹ (r ¹ 1)
5=2h ¹ h2ÿ �

(1¹ h)(1¹ h=2)
, (9)

wherer is the number of segments per molecule. ForBaniso
2 ,

Williamson used the exact expression for the orientation-
dependent second virial coefficient of a pair of linear
tangent hard-sphere chains given by [24]

Baniso
2 ¼

(11r ¹ 3)
2r

þ
(201)2(3:4721pr þ 0:191)

8r
: (10)

The equation of Chapman et al. givesBiso
2 ¼ (3r þ 5)=2,

close to the second virial coefficient of linear tangent
hard-sphere chains in the isotropic phase (i.e. Eq. (10)
with r ¼ 1). In this work, the model that uses Eqs. (9)
and (10) is Model 1.

2.2.2. Model 2. Equation of Hu et al. for hard-sphere chains
At moderate packing fractions, equations of state for

hard-sphere chain fluids in Refs. [9–15] give similar com-
pressibility factors in good agreement with computer simu-
lations [13]. However, the difference among these equations
of state becomes noticeable in the second virial coefficient
as the chain length rises [13]. Because Parsons-type scaling
as used in this work introduces the effect of molecular
orientation through the second virial coefficient, we
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examine how the choice of equation of state for hard-sphere
chains affects the model’s predictions of the I–N transition.
We propose a semi-empirical procedure to combine any
equation of state for hard-sphere chains with Parsons-type
scaling as given by Eqs. (2) and (3). To combine the
equation-of-state theory with Eqs. (2) and (3), we need the
expression forBaniso

2 as a function ofr.
For a pair of linear tangent hard-sphere chains, Eq. (10)

shows thatBaniso
2 consists of the second virial coefficient for

a parallel configuration (11r ¹ 3)/2r and a function that is
linear inr having a small intercept atr ¼ 0. Therefore, we
propose to combine Eqs. (2) and (3) with any equation of
state for hard-sphere chains by assuming thatBaniso

2 is given
by

Baniso
2 ¼

(11r ¹ 3)
2r

þ Biso
2 ¹

(11r ¹ 3)
2r

� �
r: (11)

As an example, we use the equation of state of Hu et al. that
gives second virial coefficients and compressibility factors
in excellent agreement with computer simulations for flex-
ible hard-sphere chains over a wide rage of chain length
[13]. The equation of Chapman et al. gives a second virial
coefficient that is consistently larger than that from the
equation of Hu et al. forr . 1 wherer is the number of
segments per chain [13]. In the equation of Hu et al.,Ziso and
Biso

2 are given by [13]

Ziso ¼
1þ ah þ bh2 ¹ ch3

(1¹ h)3 (12)

Biso
2 ¼ 3þ a, (13)

wherea, b andc are given by

a¼ r 1þ
r ¹ 1

r
a2 þ

r ¹ 1
r

r ¹ 2
r

a3

� �
(14)

b¼ r 1þ
r ¹ 1

r
b2 þ

r ¹ 1
r

r ¹ 2
r

b3

� �
(15)

c¼ r 1þ
r ¹ 1

r
c2 þ

r ¹ 1
r

r ¹ 2
r

c3

� �
, (16)

where

a2 ¼ 0:45696, b2 ¼ 2:10386, c2 ¼ 1:75503,

a3 ¼ ¹ 0:74745, b3 ¼ 3:49695, c3 ¼ 4:83207: ð17Þ

The model that uses Eqs. (11)–(13) is Model 2.

2.2.3. Model 3. Equation of Lee for hard spherocylinders
For the I–N transition of lyotropic polymer liquid

crystals, most theories are based on the equation-of-state
theory for hard spherocylinders such as the scaled-particle
theory [17,25,26]. In this work, we compare Models 1 and 2
for hard-sphere chains with the equation of Lee for hard
spherocylinders that is also based on Parsons scaling
[4–6].

In the equation of Lee, the effect of molecular shape as
well as that of molecular orientation are introduced into the
Carnahan–Starling equation of state for hard-sphere fluids.
For the anisotropic phase, the compressibility factor and the
Helmholtz energy per molecule are given by

Zaniso¼ 1þ 4h
(1¹ h=2)
(1¹ h)3 1þ

r

4
g(x)

h i
(18)

Aaniso

kT
¼

A0

kT
þ ln hþ j þ 4h

(1¹ 3h=4)
(1¹ h)2 1þ

r

4
g(x)

h i
, (19)

wherex is the aspect ratio of spherocylinder and

g(x) ¼
3x2=2

1þ 3x=2
: (20)

In Eq. (19), the terms in the square bracket are proportional
to the excluded volume of a pair of spherocylinders having
angleg between two molecular-orientation vectors. Hard-
sphere fluids are recovered in the limitx → 0.

In this work, the equation of Lee is Model 3. Withr ¼ 1
andj ¼ 0 in Eqs. (18) and (19), we recover the compressi-
bility factor and the Helmholtz energy per molecule of
isotropic hard-spherocylinder fluids. Combined with
Eqs. (7) and (8), the equation of Lee was also extended to
semi-flexible polymers by DuPre´ and Yang [5].

2.3. Phase equilibrium calculations

Our main interest is to compute the concentration of poly-
mer at the I–N transition. That concentration is obtained
from the phase equilibrium conditions for the coexisting
isotropic and anisotropic (i.e. nematic) phases at the same
temperature:

miso

kT
¼

maniso

kT
(21)

Pison0

kT
¼

Panison0

kT
(22)

where m is the chemical potential of polymer,n0 is the
volume of polymer per molecule andP is the osmotic pres-
sure. The osmotic pressure represents the chemical potential
of solvent. In Eqs. (21) and (22), subscripts iso and aniso
denote the isotropic and anisotropic phases, respectively, at
the I–N transition.

The chemical potential of polymer and the osmotic
pressure depend on parametersj andr defined by Eqs. (7)
and (8), respectively. These parameters are functions of
the variational parametera that is determined by the
minimization condition

]
Aaniso

kT

� �
]a

¼ 0: (23)

In terms of the compressibility factor and the Helmholtz
energy per molecule, the chemical potential of polymer
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and the osmotic pressure are given by

m

kT
¼

A
kT

þ Z ¹ 1 (24)

Pn0

kT
¼ hZ, (25)

where the product ofh and Z in Eq. (25) gives a reduced
pressure.

3. Comparison with computer simulations

We first compare Models 1 and 2 with computer
simulation by Wilson and Allen [18] for a semi-flexible
hard-sphere chain consisting of seven segments. Forr ¼

7, Models 1 and 2 giveBiso
2 ¼ 13 and 9.5, respectively. In

the simulation by Wilson and Allen, adjacent segments were
constrained in narrow potential wells with infinitely steep
walls having well width6 0.05d whered is the equilibrium
bond length. Additional constrains were also applied to pre-
vent non-adjacent spheres from overlapping and to control
chain flexibility. For a pair of non-adjacentith and jth
segments, the minimum bond length was set toli ¹ jld.
Therefore, the hard-sphere chains simulated in Ref. [18]
are nearly rigid.

Fig. 1 shows the reduced pressurehZ for a hard-sphere
chain consisting of seven segments [18]. Open circles
show the computer simulation by Wilson and Allen for a
fairly rigid hard-sphere chain [18]. The broken and solid
curves are for Models 1 and 2, respectively. Because the

hard-sphere chains simulated in Ref. [18] are nearly rigid,
theoretical curves were computed using the orientational
entropy for the rigid rod [i.e.L/P ¼ 0 in Eq. (7)]. The
solid circle is the reduced pressure where computer simula-
tion showed the I–N transition. Models 1 and 2 predict the
I–N transitions at the pressures where the theoretical curves
are displaced toward higher packing fractions.

In the isotropic phase, both Models 1 and 2 show good
agreement with computer simulation; there is little differ-
ence between Models 1 and 2. The results show that chain
flexibility has a very small effect on the reduced pressure of
isotropic fluids. Model 2 predicts the I–N transition concen-
tration and pressure in agreement with computer simulation.
However, both models overestimate the increase in concen-
tration when the system undergoes the I–N transition.

It is fortuitous that Model 2 predicts the I–N transition
concentration and pressure in better agreement with the
computer simulation in Ref. [18] than Model 1. The I–N
transition concentration is sensitive to the flexibility of
hard-sphere chains. As Wilson showed by another set of
computer simulations in Ref. [27], the I–N transition con-
centration rises as chain flexibility increases. Because the
primary difference between Models 1 and 2 lies in the
second virial coefficient, the curves shown in Fig. 1 only
indicate that for Parsons-type scaling, the expression for the
second virial coefficient has a large effect on the predicted
I–N transition concentration.

In Fig. 1, the disagreement between Model 1 and
computer simulations is not due to the use of Onsager’s
trial function for the orientational distribution function.

Fig. 1. Reduced pressurehZ for a hard-sphere chain consisting of seven segments. Open circles represent computer simulation by Wilson and Allen for a nearly
rigid semi-flexible hard-sphere chain [18]. The solid circle is the reduced pressure where computer simulation showed the I–N transition. Theoretical curves
are for Models 1 and 2 with the orientational entropy for the rigid rod [i.e.L/P ¼ 0 in Eq. (7)]. Models 1 and 2 predict the I–N transitions at the pressures where
the theoretical curves are displaced toward higher packing fractions.
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Table 2
Equation-of-state parameters for PHIC in toluene at 258C

Model 1 Model 2 Model 3

d (Å) 9.70 4.23 9.91
r/M (mol/g) 0.00162 0.00818 0.00157b

%rmsa 4.0 3.9 4.4

aPercent root-mean-square relative deviations.
bx/M (mol/g).

Table 1
Equation-of-state parameters for PHIC in DCM at 208C

Model 1 Model 2 Model 3

d (Å) 15.0 8.93 12.5
r/M (mol/g) 0.000644 0.00190 0.000903b

%rmsa 2.2 4.1 4.0

aPercent root-mean-square relative deviations.
bx/M (mol/g).

Fig. 2. (a) Derivative of osmotic pressure of isotropic poly(hexyl isocyanate) (PHIC) solutions in dichloromethane (DCM) at 208C (Dm0 ; ¹ Pns wheren s is
the volume of solvent per molecule) [20]. Curves are the fit by Model 1 using equation-of-state parameters in Table 1. (b) Polymer concentration at the I-N
transition for PHIC in DCM at 208C [21]. Curves are predictions withML ¼ 740 g/mol nm andP ¼ 21 nm [21] using equation-of-state parameters in Table 1.
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There is only a small difference between Model 1 that uses
the Onsager’s trial function and Model 1 that determines the
orientational distribution function exactly by Monte Carlo
simulations presented by Williamson [17].

4. Comparison with experiment

We next compare Models 1–3 with experiment for binary
polymer solutions that exhibit the I–N transition. Using
parameters regressed from experimental properties of iso-
tropic solutions, our objective is to predict the polymer con-
centration at the I–N transition as a function of polymer
molecular weight.

For a given molecular weight of polymerM, Models 1
and 2 use the hard-sphere diameterd and the number of
segments per moleculer to specify the size of molecule.
Similarly, Model 3 uses hard-spherocylinder diameterd
and aspect ratiox. We assume that the equation-of-state
parametersd, r/M (for hard-sphere chains), andx/M (for
hard spherocylinders) are independent ofM. We use the
weight-average molecular weight of polymer forM. Poly-
mers studied in this work are monodisperse. For lyotropic
polymer liquid crystals, polydispersity has a large effect on
the I–N transition [23].

To provide a fair comparison of different models, we
regress the equation of state parameters from the same set
of experimental data. For each system, these parameters are
regressed from the experimental osmotic pressure or from
the first derivative of osmotic pressure with respect to
polymer concentration in the isotropic phase. The latter
thermodynamic property is determined from sedimentation
equilibrium measurements. Although both Models 1 and 2
are for hard-sphere chain fluids, the equation-of-state
parameters for Model 1 are not necessarily equal to those
for Model 2 when these parameters are regressed from
experimental data.

To apply Models 1–3 to real systems, it is first necessary
to express the packing fraction as a function of the weight
fraction of polymer using the measured density of solution.
The packing fraction is given by

h¼
w
ñ

� � NAVn0

M

� �
, (26)

wherew is the weight fraction of polymer,̃n is the specific
volume of solution, NAV is the Avogadro number,n0 is the
volume of polymer per molecule, andM is the molecular
weight of polymer in mass per mole.

For a hard-sphere chain ofd andr, n0 is given by

n0 ¼
4
3
p

r
M

� � d
2

� �3

M (27)

and for a hard spherocylinder ofd andx

n0 ¼pd3 1
4

x
M

� �
M þ

1
6

� �
: (28)

For semi-flexible polymers, we also need the ratio of con-
tour lengthL to persistence lengthP in Eq. (7). Using the
contour length per unit mass of polymerML, L/P is given by

L=P¼ M=(MLP), (29)

where the product ofML andP appears in Eq. (29). For each
solvent-polymer pair, we takeML andP from the literature
where these parameters are obtained from intrinsic-viscosity
data using the wormlike-chain theory [21,23]. Because the
persistence length is difficult to determine, the product of
ML andP may be used as an adjustable fitting parameter.
We use the same persistence length for Models 1–3. In the
following, we discuss some systems in the order of
decreasing chain flexibility (i.e. in the order of increasing
persistence length).

4.1. Poly(hexyl isocyanate) in dichloromethane

We first apply Models 1–3 to poly(hexyl isocyanate)
(PHIC) in dichloromethane (DCM) at 208C [20,21]. For
PHIC in DCM at 208C, Table 1 gives the equation-of-state
parameters regressed from sedimentation equilibrium data
for isotropic solutions measured by Itou et al. [20]. Percent
root-mean-square (%rms) relative deviations between
measured and calculated values are also shown in Table 1.
Sedimentation equilibrium measurements give the first deri-
vative of osmotic pressure with respect to the concentration
of polymer. Based on %rms, Model 1 gives the best fit to the
data of Itou et al. [20]. Fig. 2a shows the derivative of
osmotic pressure for isotropic PHIC solutions in DCM at
208C (Dm0 ; Pns where ns is the volume of solvent per
molecule). Curves are the fit by Model 1.

Fig. 2b shows the polymer concentration at the I–N
transition for PHIC in DCM at 208C. Curves are predictions
by Models 1–3 withML ¼ 740 g/mol nm andP ¼ 21 nm
[21]. All models predict polymer concentrations at the I–N
transition that are higher than experiment, probably because
present models overestimate the flexibility effect. Theoreti-
cal curves are sensitive to persistence lengthP. In Fig. 2b, a
decrease inP shifts theoretical curves upward. The differ-
ences among Models 1–3 are large for polymers with low
molecular weights. However, the difference among these
models decreases as the polymer molecular weight rises.
At the I–N transition, all models underpredict the difference
between the concentration of PHIC in the isotropic phase
and that in the nematic phase.

4.2. Poly(hexyl isocyanate) in toluene

For PHIC, data are also available for solutions in toluene
at 258C [20,21]. PHIC in toluene is characterized byML ¼

740 g/mol nm andP ¼ 37 nm [21]. PHIC is stiffer in
toluene than in DCM. For PHIC in toluene at 258C,
Table 2 gives the equation-of-state parameters regressed
from osmotic-pressure data for isotropic solutions measured
by Itou et al. [20]. As reflected in %rms relative deviations,
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all models give correlations of similar quality. The hard-
sphere diameter for Model 1 is close to that for the hard
spherocylinder in Model 3.

Fig. 3a shows the osmotic pressure of isotropic PHIC
solutions in toluene at 258C. Curves are the fit by Model 2
for molecular weights 133 000 and 244 000. Itou et al. [20]
also report data for PHIC withM ¼ 32 000. However, we
were not able to correlate simultaneously the data for all
three molecular weights of PHIC using a unique set of

equation-of-state parameters, partly because the PHIC
with M ¼ 32 000 is more polydisperse than the others
[20]. In addition, molecular weight 32 000 may not be
large enough for our assumption that equation-of-state para-
meters are independent of molecular weight for PHIC in
toluene.

Fig. 3b shows the concentration of polymer at the I–N
transition for PHIC in toluene at 258C. Curves are predic-
tions with ML ¼ 740 g/mol nm andP ¼ 37 nm [21]. All

Fig. 3. (a) Osmotic pressure of isotropic poly(hexyl isocyanate) (PHIC) solutions in toluene at 258C [20]. Curves are the fit by Model 2 with the equation-of-
state parameters given in Table 2. (b) Polymer concentration at the I-N transition for PHIC in toluene at 258C [21]. Curves are predictions withML ¼ 740 g/
mol nm andP ¼ 37 nm [21] using equation-of-state parameters in Table 2.
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models predict similar polymer concentrations at the I–N
transition that are slightly lower than experiment. At the
I–N transition, experiment shows that the difference in the
concentration of PHIC between the isotropic and nematic
phases is smaller in toluene than in DCM shown in Fig. 2b.
For PHIC in toluene, all models predict the difference in the
concentration of PHIC between the isotropic and nematic
phases in agreement with experiment.

4.3. Polysaccharide schizophyllan in water

Finally, we compare Models 1–3 with experiment for an
aqueous solution of polysaccharide schizophyllan [22,23]
that has a rigid helical conformation in water characterized
by ML ¼ 2150 g/mol nm andP ¼ 200 nm at 258C [23]. For
aqueous solutions of polysaccharide schizophyllan at 258C,
Table 3 gives the equation-of-state parameters regressed
from the sedimentation equilibrium data of isotropic solu-
tions measured by Van and Teramoto [22]. Similar to the
equation-of-state parameters for PHIC in toluene shown in
Table 2, the hard-sphere diameter for Model 1 is close to
that for the hard spherocylinder for Model 3. All models

correlate the data of Van and Teramoto with similar quality.
In aqueous solutions of polysaccharide schizophyllan, the

anisotropic phase is not the nematic phase, but the choles-
teric phase. However, the cholesteric phase is very similar to
the nematic phase; we therefore neglect the difference
between the nematic and cholesteric phases [28]. Fig. 4
shows the polymer concentration at the isotropic–anisotro-
pic transition for polysaccharide schizophyllan in water at
258C [23]. Data are for the isotropic–cholesteric transition
[23] and curves are the predictions for the I–N transition.
The scatter in the data may be partly due to the polydisper-
sity effect because polysaccharide schizophyllan [23]
shown in Fig. 4 is more polydisperse than PHIC shown in
Figs. 2 and 3 [21]. For lyotropic polymer liquid crystals,
polydispersity has a large effect on the isotropic–
anisotropic transition [23].

5. Conclusions

To predict the isotropic–nematic (I–N) transition of
lyotropic polymer liquid crystals, Parsons-type scaling and
the Onsager theory were combined with the equation-of-
state for hard-sphere-chain fluids of Chapman et al. [10]
and that of Hu et al. [13] The primary difference between
these equations lies in the second virial coefficient. The
equation of Chapman et al. gives a second virial coefficient
larger than that of Hu et al. forr . 1 wherer is the number
of segments per chain. These models were first compared
with the computer simulation by Wilson and Allen [18]
for a nearly rigid semi-flexible hard-sphere chain
consisting of seven segments. The equation of Hu et al.

Fig. 4. Polymer concentration at the I–N transition for polysaccharide schizophyllan in water at 258C [22,23]. Curves are predictions withML ¼ 2150 g/
mol nm andP ¼ 200 nm [23] using equation-of-state parameters in Table 3.

Table 3
Equation-of-state parameters for polysaccharide schizophyllan in water at
258C

Model 1 Model 2 Model 3

d (Å) 22.2 10.7 21.4
r/M (mol/g) 0.000162 0.000700 0.000172b

%rmsa 4.0 4.1 3.3

aPercent root-mean-square relative deviations.
bx/M (mol/g).
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gives the I–N transition concentration and pressure in good
agreement with the computer simulation by Wilson and
Allen [18].

For real semi-flexible polymers, we follow the procedure
of DuPréand Yang [3,5] that introduces chain flexibility
into the orientational entropy using the Khokhlov–Semenov
theory of persistent chains [19]. This procedure requires the
persistence length to specify the extent of chain flexibility.
The persistence length affects only the Helmholtz energy of
the nematic phase.

The equations of Chapman et al. (Model 1) and Hu et al.
(Model 2) were also compared with experiment for two
binary polymer solutions containing poly(hexyl isocyanate)
(PHIC) and for another solution that contains polysacchar-
ide schizophyllan. For comparison, calculations were also
made using the theory of DuPre´ and Yang [3,5] (Model 3)
for hard spherocylinders [4] based on Parsons scaling. To
provide a fair comparison among these models, we first
regressed the equation-of-state parameters that represent
the size of polymer from experimental osmotic-pressure
data for isotropic solutions. For each solvent-polymer pair,
we used the reported persistence length regressed from
intrinsic-viscosity data using the wormlike-chain theory.
The concentration of polymer at the I–N transition
was then predicted as a function of polymer molecular
weight.

In the isotropic phase, Models 1–3 correlate well the
osmotic pressure and the first derivative of osmotic pressure
with respect to polymer concentration. There is no
appreciable difference in the predicted polymer concentra-
tion at the I–N transition. However, as shown in Fig. 2b for
PHIC in dichloromethane, the differences among Models
1–3 may become apparent for low-molecular-weight
polymers.

Considering the large uncertainty in the persistence
length of polymers, agreement of theory with
experiment is encouraging. For Parsons-type scaling used
in this work, for sufficiently large polymers, the
expression for the compressibility factor of the
isotropic phase is not important as long as the model is
capable of correlating the osmotic pressure of isotropic
solutions.
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